Skip to main content
Log in

A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nickel modified graphite electrodes (G/Ni) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol, ethanol, 1-propanol and 2-propanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) were employed. In CV studies, the electrochemical response, peak current varied in the order of MeOH > EtOH > 1-PrOH > 2-PrOH. Under the CA regime, a higher catalytic rate constant obtained for methanol oxidation was in agreement with CV measurements. Lower charge transfer resistance was obtained for low carbon alcohols oxidation and significantly higher exchange current density was obtained for methanol oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danaee I, Jafarian M, Gobal F, Sharafi M, Mahjani MG. Electrochemical impedance of ethanol oxidation in alkaline eedia. Chem Res Chinese Universities, 2012, 28: 19–25

    CAS  Google Scholar 

  2. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: Electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem, 2004, 563: 81–89

    Article  CAS  Google Scholar 

  3. Secanell M, Wishart J, Dobson P. Computational design and optimization of fuel cells and fuel cell systems: A review. J Power sources, 2011, 196: 3690–3704

    Article  CAS  Google Scholar 

  4. Feng L, Zhang J, Cai W, Liang L, Xing W, Liu C. Single passive direct methanol fuel cell supplied with pure methanol. J Power sources, 2011, 196: 2750–2753

    Article  CAS  Google Scholar 

  5. Danaee I, Jafarian M, Mirzapoor A, Gobal F, Mahjani MG. Electrooxidation of methanol on NiMn alloy modified graphite electrode. Electrochim Acta, 2010, 55: 2093–2100

    Article  CAS  Google Scholar 

  6. Feng L, Zhao X, Yang J, Xing W, Liu C. Electrocatalytic activity of Pt/C catalysts for methanol electrooxidation promoted by molybdovanadophosphoric acid. Catal Commun, 2011, 14: 10–14

    Article  CAS  Google Scholar 

  7. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger JM. Recent advances in the development of direct alcohol fuel cells (DAFC). J Power sources, 2002, 105:283–296

    Article  CAS  Google Scholar 

  8. Rodrigues LDA, De Souza JPI, Pastor E, Nart FC. Cleavage of the C-C bond during the electrooxidation of 1-propanol and 2-propanol: Effect of the Pt morphology and of codeposited Ru. Langmuir, 1997, 13: 6829–6835

    Article  CAS  Google Scholar 

  9. Sun SG, Lin Y. In situ FTIR spectroscopic investigations of reaction mechanism of isopropanol oxidation on platinum single crystal electrodes. Electrochim Acta, 1996, 41: 693–700

    Article  CAS  Google Scholar 

  10. Fujiwara N, Siroma Z, Ioroi T, Yasuda K. Rapid evaluation of the electrooxidation of fuel compounds with a multiple-electrode setup for direct polymer electrolyte fuel cells. J Power Sources, 2007, 164: 457–463

    Article  CAS  Google Scholar 

  11. Liu J, Ye J, Xu C, Jiang SP, Tong Y. Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium. J Power Sources, 2008, 177: 67–70

    Article  CAS  Google Scholar 

  12. Santasalo A, Vidal-Iglesias FJ, Solla-Gullón J, Berná A, Kallio T, Feliu JM. Electrooxidation of methanol and 2-propanol mixtures at platinum single crystal electrodes. Electrochim Acta, 2009, 54: 6576–6583

    Article  CAS  Google Scholar 

  13. Cheng Y, Liu Y, Cao D, Wang G, Gao Y. Effects of acetone on electrooxidation of 2-propanol in alkaline medium on the Pd/Ni-foam electrode. J Power Sources, 2011, 196: 3124–3128

    Article  CAS  Google Scholar 

  14. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energy, 2008, 33: 4367–4376

    Article  CAS  Google Scholar 

  15. Antolini E. Catalysts for direct ethanol fuel cells. J Power sources, 2007, 170: 1–12

    Article  CAS  Google Scholar 

  16. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG. Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode. Int J Hydrogen Energy 2009, 34: 859–869

    Article  CAS  Google Scholar 

  17. Tian T, Liu C, Liao J, Xing W, Lu T. The enhancement effect of Eu3+ on electro-oxidation of ethanol at Pt electrode. J Power sources, 2007, 174: 176–179

    Article  CAS  Google Scholar 

  18. Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells: A review. Mater Chem Phys 2003, 78: 563–573

    Article  CAS  Google Scholar 

  19. King WD, Corn JD, Murphy OJ, Boxall DL, Kenik EA, Kwiatkowski KC. Pt-Ru and Pt-Ru-P/carbon nanocomposites: Synthesis, characterization, and unexpected performance as direct methanol fuel cell (DMFC) anode catalysts. J Phys Chem, 2003,107: 5467–5474

    Article  CAS  Google Scholar 

  20. Park IS, Park KW, Choi JH, Park CR, Sung YE. Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles. Carbon, 2007, 45: 28–33

    Article  CAS  Google Scholar 

  21. Feng L, Yan L, Cui Z, Liu C, Xing W. High activity of Pd-WO3/C catalyst as anodic catalyst for direct formic acid fuel cell. J Power sources, 2011, 196: 2469–2474

    Article  CAS  Google Scholar 

  22. Cui Z, Feng L, Liu C, Xing W. Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation. J Power sources, 2011, 196: 2621–2626

    Article  CAS  Google Scholar 

  23. Wen TC, Lin SM, Tsai JM. Sulphur content and the hydrogen evolving activity of NiSx deposits using statistical experimental strategies. J Appl Electrochem, 1994, 24: 233–238

    CAS  Google Scholar 

  24. Fan C, Piron DL, Sleb A, Paradis P. Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J Electrochem Soc, 1994, 141: 382–387

    Article  CAS  Google Scholar 

  25. Raj LA, Vasu KI. Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem, 1991, 32: 32–38

    Google Scholar 

  26. Casadei MA, Pletcher D. The influence of conditions on the electrocatalytic hydrogenation of organic molecules. Electrochim Acta, 1988, 33: 117–1120

    Article  Google Scholar 

  27. Berchmans S, Gomathi H, Prabhakara Rao G. Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode. J Electroanal Chem, 1995, 394: 267–270

    Article  Google Scholar 

  28. Fleischmann M, Korinek K, Pletcher D. The kinetics and mechanism of the oxidation of amines and alcohols at oxidecovered nickel, silver, copper, and cobalt electrodes. J Chem Soc Perkin Trans, 1972, 2: 1396–1402

    Google Scholar 

  29. Taraszewska J, Roslonek G. Electrocatalytic oxidation of methanol on a glassy carbon electrode modified by nickel hydroxide formed by ex situ chemical precipitation. J Electroanal Chem, 1994, 364: 209–213

    Article  CAS  Google Scholar 

  30. Danaee I. Kinetics and mechanism of palladium electrodepositon on graphite electrode by impedance and noise measurements. J Electroanal Chem, 2011, 662: 415–420

    Article  CAS  Google Scholar 

  31. El-Shafei AA. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J Electroanal Chem, 1999, 471: 89–95

    Article  CAS  Google Scholar 

  32. Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG. Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem, 2009, 13: 1171–1179

    Article  CAS  Google Scholar 

  33. Hahn F, Beden B, Croissant MG, Lamy C. In situ UV visible reflectance spectroscopic investigation of the nickel electrodealkaline solution interface. Electrochim Acta, 1986, 31: 335–342

    Article  CAS  Google Scholar 

  34. Desilvestro J, Corrigan DA, Weaver MJ. Characterization of redox states of nickel hydroxide filmelectrodes by in situ surface Raman spectroscopy. J Electrochem Soc, 1988, 135: 885–892

    Article  CAS  Google Scholar 

  35. Barnard R, Randell CF. Studies concerning charged nickel hydroxide electrodes. VII. Influence of alkali concentration on anodic peak positions. J Appl Electrochem, 1983, 13: 89–95

    Article  CAS  Google Scholar 

  36. Fleischmann M, Korinek MK, Pletcher D. The oxidation of organic compounds at a nickel anode in alkaline solution. J Electroanal Chem, 1971, 31: 39–49

    Article  CAS  Google Scholar 

  37. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG. Kinetic interpretation of a negative time constant impedance of glucose electrooxidation. J Phys Chem B, 2008, 112: 15933–15940

    Article  CAS  Google Scholar 

  38. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG. Impedance spectroscopy analysis of glucose electro-oxidation on Ni-modified glassy carbon electrode. Electrochim Acta, 2008, 53: 6602–6609

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR. Electrochemical Methods. New York: Wiley, 2001

    Google Scholar 

  40. Danaee I, Noori S. Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode. Int J Hydrogen Energy, 2011, 36: 12102–12111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Danaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarian, M., Mirzapoor, A., Danaee, I. et al. A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode. Sci. China Chem. 55, 1819–1824 (2012). https://doi.org/10.1007/s11426-012-4731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4731-6

Keywords

Navigation